The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 X^2 1 X^2 1 X^2 1 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 0 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 X^2 X^2 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 0 0 0 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 0 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 X^2 0 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 X^2 X^2 X^2 0 0 0 0 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 0 0 0 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 0 X^2 X^2 X^2 0 X^2 0 X^2 0 0 0 X^2 X^2 X^2 X^2 generates a code of length 83 over Z2[X]/(X^3) who´s minimum homogenous weight is 82. Homogenous weight enumerator: w(x)=1x^0+65x^82+32x^83+10x^84+10x^86+5x^88+4x^98+1x^106 The gray image is a linear code over GF(2) with n=332, k=7 and d=164. This code was found by Heurico 1.16 in 2.57 seconds.